On the Parametric Instability Caused by Step Size Variation in Runge-Kutta-Nyström Methods

نویسنده

  • Robert Piché
چکیده

The parametric instability arising when ordinary differential equations (ODEs) are numerically integrated with Runge-Kutta-Nyström (RKN) methods with varying step sizes is investigated. Perturbation methods are used to quantify the critical step sizes associated with parametric instability. It is shown that there is no parametric instability for linear constant coefficient ODEs integrated with RKN methods that are based on A-stable Runge-Kutta methods, because the solution is nonincreasing in some norm for all positive step sizes, constant or varying.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Step-size Selection Methods for Implicit Integration Schemes for Odes

Implicit integration schemes for ODEs, such as Runge-Kutta and Runge-Kutta-Nyström methods, are widely used in mathematics and engineering to numerically solve ordinary differential equations. Every integration method requires one to choose a step-size, h, for the integration. If h is too large or too small the efficiency of an implicit scheme is relatively low. As every implicit integration sc...

متن کامل

A New Diagonally Implicit Runge-Kutta-Nyström Method for Periodic IVPs

A new diagonally implicit Runge-Kutta-Nyström (RKN) method is developed for the integration of initial-value problems for second-order ordinary differential equations possessing oscillatory solutions. Presented is a method which is three-stage fourth-order with dispersive order six and 'small' principal local truncation error terms and dissipation constant. The analysis of phase-lag, dissipatio...

متن کامل

Variable Step Runge-Kutta-Nyström Methods for the Numerical Solution of Reversible Systems

Fixed step, symmetric Runge-Kutta-Nyström formulae have proved to be very efficient for the numerical integration of a large class of reversible second order systems of ordinary differential equations of the special form d 2y dt2 = f(t, y). However for some important classes of problems it is necessary, for the sake of efficiency, to allow a variable steplength of integration to be used and in ...

متن کامل

A Zero-Dissipative Runge-Kutta-Nyström Method with Minimal Phase-Lag

An explicit Runge-Kutta-Nyström method is developed for solving second-order differential equations of the form q′′ f t, q where the solutions are oscillatory. The method has zero-dissipation with minimal phase-lag at a cost of three-function evaluations per step of integration. Numerical comparisons with RKN3HS, RKN3V, RKN4G, and RKN4C methods show the preciseness and effectiveness of the meth...

متن کامل

A New Optimized Runge-Kutta-Nyström Method to Solve Oscillation Problems

In this article, a new Runge-Kutta-Nyström method is derived. The new RKN method has zero phase-lag, zero amplification error and zero first derivative of phase-lag. This method is basically based on the sixth algebraic order Runge-Kutta-Nyström method, which has proposed by Dormand, El-Mikkawy and Prince. Numerical illustrations show that the new proposed method is much efficient as compared w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1209.5173  شماره 

صفحات  -

تاریخ انتشار 2012